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Markov equation

Markov Diophantine equation

X2 + Y2 + Z2 = 3XYZ, X, Y,Z ∈ Z+.

Markov 1880: Every solution can be found from (1, 1, 1) by

applying Vieta involution

(X, Y,Z) →

(
X, Y,

X2 + Y2

Z

)

and permutations.
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Generalised Markov equation and Markov polynomials

Generalised Markov equation (Propp et al. 2003)

X2 + Y2 + Z2 = k(x,y, z)XYZ, k(x,y, z) =
x2 + y2 + z2

xyz

Using the same procedure applied to (X = x, Y = y,Z = z), we

get the solutions, which are Laurent polynomials of the parameters
x,y, z. Indeed, we can use the alternative Vieta involution

(X, Y,Z) → (X, Y,k(x,y, z)XY − Z).

These Laurent polynomials are called Markov polynomials.
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Markov Cluster Algebra

Markov quiver:

x y

z
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Markov Cluster Algebra

Markov quiver mutations:

x y

z

x y

z
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x y

z
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x y

z

x y

z ′

Seed mutation exchange relation:

z ′ =
1

z

∏
xi→z

xi +
∏
z→xj

xj


=

x2 + y2

z
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Conway Topograph and Frobenius Correspondence

Frobenius 1913: The Markov numbers can be indexed by the
rationals in [0, 1].

ρ =
a

b
→ mρ (Markov number)

e1

e2

e1 + e2e1 − e2

2e1 + e2

e1 + 2e2

2e1 − e2

e1 − 2e2

Figure: Conway Topograph
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Conway Topograph and Frobenius Correspondence

r
s

r ′

s ′

r+r ′

s+s ′

Figure: Farey rationals iterations on
the Conway topograph

Z

X Y

Z ′ = X2+Y2

Z

Figure: Markov number iterations on
the Conway topograh
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Conway Topograph and Frobenius Correspondence
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Geometry of Markov Polynomials

Mρ(x,y, z) =
Pρ(x,y, z)

Qρ(x,y, z)

Theorem 1 (EVW 2024)

The denominator of a Markov polynomial corresponding to the
rational ρ = a

b is Qρ(x,y, z) = x(a−1)y(b−1)z(a+b−1).

By homogeneity we have

Pρ(x,y, z) =
∑

Aijx
2iy2jz2(a+b−1−i−j).

Propp 2005: Markov polynomials have positive coefficients.

We define the Newton polygon ∆ρ as follows

∆ρ = ∆(Mρ) := Conv{(i, j) : Aij ̸= 0} ⊂ Z2.
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Newton Polygon Example
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Figure: Newton polygon ∆ρ.

Example:

ρ =
2

3
, mρ = 29.

Pρ(x,y, 1) =

x8 + 4x6y2 + 6x4y4 + 4x2y6

+ y8 + 2x6 + 5x4y2

+ 4x2y4 + y6 + x4
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Geometry of Newton Polygon

Theorem 2 (EVW 2024)

Given a rational ρ = a
b , ∆ρ is the area (on the ij-plane with

i, j ⩾ 0) satisfying the conditions

∆ρ =


i

a
+

j

b
⩾ 1

i+ j ⩽ a+ b− 1

Conjecture 3 (Saturation Conjecture, EVW 2024)

Terms that appear in the numerator of a Markov polynomial Mρ

are precisely those corresponding to the set of integer lattice points
on ∆ρ.
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Weighted Newton Polygon
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Figure: ‘Weighted’ Newton polygon
∆ρ, ρ = 2

3 .

Pρ(x,y, 1) =

x8 + 4x6y2 + 6x4y4 + 4x2y6

+ y8 + 2x6 + 5x4y2

+ 4x2y4 + y6 + x4

We define the Markov function
on the Newton polygon

M : ∆ρ → Z
(i, j) 7→ M((i, j)).
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Weighted Newton Polygon
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Coefficients on Newton Polygon Boundary

Theorem 4 (EVW 2024)

Given a rational a
b the coefficients on the boundary of the

corresponding Markov polynomial’s Newton polygon are binomial
coefficients. In particular,

Line Coefficients

j = 0
(
b−1
i−a

)
i = 0

(
a−1
j−b

)
i+ j = a+ b− 1

(
a+b−1

i

)
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Coefficients on Newton Polygon Interior

Coefficients of second upper-most diagonal of ∆ρ

[2, 5, 4, 1] = [1, 3, 3, 1] + [1, 2, 1, 0]

Theorem 5 (EVW 2024)

Coefficients on the 2nd upper-most diagonal:

(a− 1)

(
a+ b− 2

i

)
+ (b− a)

(
a+ b− 3

i− 1

)
.

Theorem 6 (EVW 2024)

Coefficients on the 3rd upper-most diagonal:

(a− 1)(a− 2)

2

(
a+ b− 3

i

)
+ [a(b− a) − a]

(
a+ b− 4

i− 1

)
+

1

2
[(b− a)2 + 5a− 3b]

(
a+ b− 5

i− 2

)
.
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Coefficients on Newton Polygon Interior

Theorem 7 (EVW 2024)

Coefficients on the 2nd lower-most horizontal of the Newton
polygon of Markov polynomials (the line j = 1) are

(3a− 1)

(
b− 2

i− a

)
+ (b− 2a)

(
b− 3

i− 1− a

)
.
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Coefficients on Critical Triangle
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Figure: ‘Weighted’ Newton polygon
∆ρ, ρ = 3

5 (mρ = 433).

Conjecture 8 (EVW 2024)

The coefficients of the Markov
polynomial Mρ, ρ = a

b lying
inside the critical triangle of the
Newton polygon are all multiples
of 4.
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Fibonacci Polynomials

Markov polynomials Mρ, with ρ = 1
n+1 , are a specialisation of the

Fibonacci polynomials previously studied by Caldero, Zelevinsky
(2006).

Corollary 9

The Markov polynomials Mρ, ρ = 1
n+1 have coefficients

Aij =

(
n− j

n+ 1− i− j

)(
i+ j

j

)
.
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Pell Polynomials

The next ‘simplest’ case of Markov polynomials would be those
corresponding to Pell numbers, namely Mρ for ρ = n

n+1 .

It is known that triples of the form

(2,P2k−1,P2k+1)

are Markov triples, where Pi’s are Pell numbers.

The corresponding Markov polynomial triple has the form

(M1/1,Mk−1/k,Mk/k+1).
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Pell Polynomials

Applying the Vieta involution inductively, one obtains the following
recursive formulas:

R2k+1 = (x2 + y2)R2k + y2z2R2k−1

R2k = (x2 + y2)R2k−1 + x2z2R2k−2,

with R1 = 1,R3 = x4 + 2x2y2 + y4 + x2z2, where R2k+1 denotes
the numerator of the Markov polynomial Mk/k+1.

From this we can produce a recursive method for calculating
specific coefficients

A
(2k+1)
i,j =

[
A

(2k−1)
i−2,j + 2A

(2k−1)
i−1,j−1 +A

(2k−1)
i,j−2

]
+
[
A

(2k−1)
i−1,j +A

(2k−1)
i,j−1

]
−A

(2k−3)
i−1,j−1.
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Pell Polynomials
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Klein Diagram for Continued Fractions

Consider ρ = 5
3 = [1, 1, 2]. Table

of convergents:

1 1 2

pk 0 1 1 2 5
qk 1 0 1 1 3

We have sails A0A1A2 . . . and
B0B1B2 . . .

Ai = (q2i−1,p2i−1),

Bi = (q2i,p2i).

In our example,

A0 = (1, 0),A1 = (1, 1),A2 = (5, 3)

B0 = (0, 1),B1 = (2, 1), [B2 = (5, 3)]

A0

A1

A2

B0

B1

3210

5

4

3

2

1

0

Figure: Klein Diagram for ρ = 5
3
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Duality of Sails

Karpenkov 2013: We have the following Edge-Angle Duality

lα( ̸ AiAi+1Ai+2) = lℓ(BiBi+1) (= a2i+2),

lα( ̸ BiBi+1Bi+2) = lℓ(Ai+1Ai+2) (= a2i+3),

Sam Evans Markov Polynomials



newlogo

Markov Sails

B0

B1

A1

A0

3210

5

4

3

2

1

0

Ai := (q2i−1,b− p2i−1), Bi := (a− q2i,p2i),
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Coefficients on the Markov Sail

Conjecture 10 (EVW 2024)

Coefficients on the edge CiCi+1 of the Markov sail are arithmetic
progressions with differences d(CiCi+1) satisfying

d(BiBi+1) = −M(Ai+1), d(Ai+1Ai+2) = −M(Bi+1).

Conjecture 11 (EVW 2024)

Consider the continued fraction b
a = [a1,a2, . . . ,an]. If

n = 2m+ 1 (odd) then M(Bm) = 4. If n = 2m (even) then
M(Am) = 4.

Sam Evans Markov Polynomials
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Coefficients on the Markov Sail

Both of these conjectures are proven in the case of the Pell
polynomials. Combining these we obtain

Theorem 12

The coefficients on the Markov sail corresponding to a rational of
the form n

n+1 are (from top to bottom)

(7n− 10, 4, 8, . . . , 4n− 4, 3n− 1).

Sam Evans Markov Polynomials
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Markov Sail Example

b

a
=

18

13
= [1, 2, 1, 1, 2]

Conjecture 11 =⇒ M(B2) = 4.

Now applying Conjecture 10
recursively,

M(A2) = M(B2) + (a5 − 1)M(B2) = 8

M(B1) = M(B2) + a4M(A2) = 12

M(A1) = M(A2) + a3M(B1) = 20.
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Conjecture 11 =⇒ M(B2) = 4.

Now applying Conjecture 10
recursively,

M(A2) = M(B2) + (a5 − 1)M(B2) = 8

M(B1) = M(B2) + a4M(A2) = 12

M(A1) = M(A2) + a3M(B1) = 20.
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Log-Concavity of Coefficients

A sequence x = (x0, x1, . . . , xn) is said to be log-concave if it
satisfies the property

x2k ⩾ xk−1xk+1,

for k ∈ {1, 2, . . . ,n− 1}.

Theorem 13 (EVW 2024)

The sequence of coefficients that appear on the 2nd upper
diagonal of the Newton polygon associated to a Markov
polynomial is (strictly) log-concave.
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Log-Concavity of Coefficients

We say that a weighted lattice is weakly log-concave if the
sequence of weights in all principal directions are log-concave.

Conjecture 14 (EVW 2024)

Coefficients of Markov polynomials are weakly log-concave.

Theorem 15 (EVW 2024)

The above holds in the case ρ = 1
n+1 .
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Combinatorial Interpretation of Markov

Markov numbers can be interpreted combinatorially, as perfect
matching on snake graphs. To construct Markov numbers in this
way we first look at the corresponding rational on the traingular
lattice.

v

O

A

Figure: Triangular lattice, with a primitive vector v corresponding to the
rational 2

3 shown.
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Markov numbers can be interpreted combinatorially, as perfect
matching on snake graphs. To construct Markov numbers in this
way we first look at the corresponding rational on the traingular
lattice.
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Figure: Triangular lattice, with a primitive vector v corresponding to the
rational 2

3 shown.
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Combinatorial Interpretation of Markov

Take the intersection of the triangles that the primitive vector
passes through to find the Markov snake.

O

A

Figure: Markov snake for vector OA.
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Combinatorial Interpretation of Markov

Take the intersection of the triangles that the primitive vector
passes through to find the Markov snake.

O

A

Figure: Markov snake for vector OA.
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Combinatorial Interpretation of Markov

Form a bipartite graph by:

Labelling vertices of the triangles with black nodes, but
removing the two end vertices.

Labelling the centres of the triangles with white nodes.

Adding edges between a nodes if the black node corresponds
to a vertex of the white nodes’ triangle.

Figure: Bipartite graph from the Markov snake.
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Combinatorial Interpretation of Markov

It can then be shown that the corresponding Markov number is
equal to the number of perfect matchings of this bipartite graph.

Here we shown this in the simpler case of ρ = 1
2 , in which case

mρ = 5. The perfect matchings are shown by the red edges.
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Combinatorial Interpretation of Markov

This combinatorial representation can be generalised to look at
Markov polynomials.

To do so we label the edges, based on their orientation as follows:

x

y
z

Figure: Weights assigned to edges in the bipartite graph.
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Combinatorial Interpretation of Markov

This combinatorial representation can be generalised to look at
Markov polynomials.

To do so we label the edges, based on their orientation as follows:

x
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z

Figure: Weights assigned to edges in the bipartite graph.
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Combinatorial Interpretation of Markov

Each perfect matching then produces a monomial by multiplying
together the weights of the edges involved in the matching.

Returning to the case of ρ = 1
2 we find

x4 x2y2 x2z2

x2y2 y4

Summing these together then gives the corresponding Markov
polynomial

Pρ = x4 + 2x2y2 + y4 + x2z2
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